Local uniqueness of certain geodesics related to Heegaard splittings

Liang Liang
School of Mathematics, Liaoning Normal University, Dalian 116029, P. R. China
liangliang@aliyun.com
Fengling Li* and Fengchun Lei†
School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, P. R. China
*dutlfl@163.com
†fclei@dlut.edu.cn
Jie Wu
Department of Mathematics, National University of Singapore, Block S17, 10 Lower Kent Ridge Road 119076, Singapore
matwuj@nus.edu.sg
Received 26 January 2018
Revised 12 February 2018
Accepted 13 February 2018
Published 2 August 2018

ABSTRACT
Suppose \(V_1 \cup_S V_2 \) is a Heegaard splitting and \(D_i \) is an essential separating disk in \(V_i \) such that a component of \(V_i - D_i \) is homeomorphic to \(F_i \times I \), \(i = 1, 2 \). In this paper, we prove that if there is a locally complicated simplicial path in \(C(S) \) connecting \(\partial D_1 \) to \(\partial D_2 \), then the geodesic connecting \(\partial D_1 \) to \(\partial D_2 \) is unique. Moreover, we give a sufficient condition such that \(V_1 \cup_S V_2 \) is keen and the geodesic between any pair of essential disks on the opposite sides has local uniqueness property.

Keywords: Curve complex; subsurface projection; keen Heegaard splitting; geodesic.

Mathematics Subject Classification 2010: 57N10, 57M50

1. Introduction
Let \(M \) be a 3-manifold and \(S \) an embedded closed orientable surface in \(M \). If \(S \) divides \(M \) into two compression bodies \(V \) and \(W \) such that \(S = \partial_+ V = \partial_+ W \), then

*Corresponding author.
For any essential disks \(g \) genus \(\geq s \) satisfying the disks realizing the Hempel distance are separating. In this paper, we consider the existence of keen Heegaard splittings obtained, see [1, 3, 9, 12–14].

In 2001, Hempel [5] introduced the concept of the distance of a Heegaard splitting obtained, see [5, 6, 8, 11]. In [7], Ido et al. introduced the concept of keen Heegaard splitting. A Heegaard splitting \(V \cup_S W \) is called keen if its Hempel distance is realized by a unique pair of essential disks on the opposite sides of \(S \). Moreover, they proved the existence of the strongly keen Heegaard splitting of genus \(g \) with distance \(n \) for each \(n \geq 2 \) and \(g \geq 3 \). In [2], E proved the existence of keen weakly reducible Heegaard splitting of genus \(g \) with \(g \geq 3 \). In [2], the authors considered the existence of keen Heegaard splittings of closed 3-manifolds and the disks realizing the Hempel distance must be non-separating. In this paper, we consider the existence of keen Heegaard splittings satisfying the disks realizing the Hempel distance are separating.

Let \(M \) be a compact orientable 3-manifold and \(F_1, F_2 \) two components of \(\partial M \) and \(V_1 \cup_S V_2 \) a Heegaard splitting of \(M \) satisfying that \(F_i \) is a component of \(\partial \cdot V_i \) where \(i = 1, 2 \). Let \(D_i \) be an essential separating disk in \(V_i \) such that a component of \(V_i - D_i \) is homeomorphic to \(F_i \times I \) for \(i = 1, 2 \). Denote the component of \(V_i - D_i \) which is not homeomorphic to \(F_i \times I \) by \(V'_i \) and \(S_i = \partial_i(F_i \times I) \cap S \), where \(i = 1, 2 \). Let \(f_i \) be the projection from \(C(S) \) to \(C(\partial_i V'_i) \) determined by \(D_i \) and \(V'_i \) the set of vertices in \(C(S) \) represented by boundaries of essential disks in \(V_i \). Let \(d_i = d_{C(\partial_i V'_i)}(\partial D_i, f_i(\partial D_i)) \), where \(\partial D_i \) denotes the set of vertices in \(C(\partial_i V'_i) \) represented by boundaries of essential disks in \(V'_i \) and \(\{i, j\} = \{1, 2\} \).

Theorem 1.1. Suppose \(V_1 \cup_S V_2 \) is a strongly irreducible Heegaard splitting and \(\{\partial D_1 = a_0, a_1, \ldots, a_n = \partial D_2\} \) is a simplicial path in \(C(S) \) connecting \(\partial D_1 \) to \(\partial D_2 \) such that \(a_0 \subset \partial_i V'_i \) and \(a_{n-1} \subset \partial_i V'_i \), If \(\text{diam}_{C(S-a_i)}(\pi_i(a_0), \pi_i(a_{i+1})) \geq M + 7 \) for \(1 \leq i \leq n - 1 \) and \(d_j \geq M + 1 \) for \(j = 1, 2 \), then

1. \(V_1 \cup_S V_2 \) is a keen Heegaard splitting with distance \(n \).
2. For any essential disks \(D_i \) in \(V_i \) where \(i = 1, 2 \), the geodesic connecting \(\partial D_i \) to \(\partial D_j \) in \(C(S) \) passes through the geodesic \(\{a_1, a_2, \ldots, a_{n-1}\} \).

If we consider a special case for \(n = 2 \), following the lines of the proof of Theorem 1.1 we have the following corollary.

Corollary 1.2. Suppose \(V_1 \cup_S V_2 \) is a strongly irreducible Heegaard splitting and \(\{\partial D_1, a, \partial D_2\} \) is a simplicial path connecting \(\partial D_1 \) to \(\partial D_2 \) in \(C(S) \) such that a does
not lie in S_i for $i = 1, 2$. If $d_{C(S-a)}(\partial D_i, \partial D_k) \geq 7$ and $d_i \geq M + 1$ for $i = 1, 2$, then

1. $V_1 \cup S V_2$ is a keen Heegaard splitting.
2. For any essential disks D^i in V_i where $i = 1, 2$, the geodesic connecting ∂D^1 to ∂D^2 in $C(S)$ passes through $\{a\}$.

The paper is organized as follows. In Sec. 2, we review some necessary preliminaries. The proofs of the main results are given in Sec. 3.

2. Preliminaries

Suppose F is a compact orientable surface of genus at least 1. The curve complex $C(F)$ of F, first introduced by Harvey [4], is defined as follows: each vertex is the isotopy class of an essential simple closed curve in F and a set of vertices in $C(F)$ which can be represented by disjoint simple closed curves in F determines a simplex in $C(F)$. When F is a torus or once-punctured torus, the curve complex of F, defined by Masur and Minsky [10], is the complex whose vertices are isotopy classes of essential simple closed curves in F, and $(k + 1)$ vertices determine a k-simplex if they can be realized by curves which mutually intersect in only one point.

For any two vertices α, β in $C(F)$, the distance between α and β, denoted by $d_{C(F)}(\alpha, \beta)$, is defined to be the minimal number of 1-simplices in all possible simplicial paths connecting α to β. The simplicial path realizes the distance between α and β is called a geodesic. Let A and B be any two sets of vertices in $C(F)$. The diameter of A, denoted by $\text{diam}_{C(F)}(A)$, is defined to be $\max\{d(x, y) \mid x, y \in A\}$. The distance between A and B, denoted by $d_{C(F)}(A, B)$, is defined to be $\min\{d(x, y) \mid x \in A, y \in B\}$. Suppose $V \cup S W$ is a Heegaard splitting of M. The distance of $V \cup S W$ is defined to be $d_{C(S)}(D_V, D_W)$, where $D_V (D_W)$ denotes the set of vertices in $C(S)$ which represent boundaries of essential disks in $V (W)$.

Let F be a compact orientable surface of genus at least 1 with non-empty boundary. Denote the arc and curve complex of F by $AC(F)$. Vertices of $AC(F)$ are isotopy classes of essential arcs or curves in F and $(k + 1)$ vertices determine a k-simplex if they can be represented by pairwise disjoint arcs or curves. The distance between two vertices α, β, denoted by $d_{AC(F)}(\alpha, \beta)$, is defined to be the minimal number of 1-simplices in a simplicial path joining α to β over all such possible paths.

Let F' be a subsurface of F such that each component of $\partial F'$ is essential in F. By the definition of projections to subsurfaces in [10], there is a natural map $\kappa_{F'}$ from vertices of $C(F)$ to finite subsets of vertices of $AC(F')$ defined as follows: For every vertex $[\gamma]$ in $C(F)$, take a curve γ in the isotopy class such that $[\gamma \cap F']$ is minimal. If $\gamma \cap F' = \emptyset$, then $\kappa_{F'}([\gamma]) = \emptyset$. If $\gamma \cap F' \neq \emptyset$, then $\kappa_{F'}([\gamma])$ is the union of the isotopy classes of essential components of $\gamma \cap F'$. Furthermore, there is a natural map $\sigma_{F'}$ from vertices of $AC(F')$ to finite subsets of vertices of $C(F')$: For
every vertex $[\beta]$ in $AC(F')$, if $[\beta]$ is the isotopy class of an essential simple closed curve in F', then $\sigma_{F'}([\beta]) = [\beta]$; if $[\beta]$ is the isotopy class of an essential arc, then $\sigma_{F'}([\beta])$ is the union of the isotopy classes of essential boundary components of the regular neighborhood of $[\beta] \cup \partial F'$. Then $\pi_{F'} = \sigma_{F'} \circ \kappa_{F'}$ is a map from vertices of $C(F)$ to finite subsets of vertices of $C(F')$.

For any two vertices $a_1, a_2 \in C(F)$, if $\pi_{F'}(a_i) \neq \emptyset$ for $i = 1, 2$, then $\text{diam}_{C(F')}(\pi_{F'}(a_1), \pi_{F'}(a_2)) \leq 2$ and $\text{diam}_{C(F')}(\pi_{F'}(a_i)) \leq 2$ where $i = 1, 2$.

The following so-called Bounded Geodesic Image Theorem, due to Masur and Minsky, will be used in our discussion.

Lemma 2.1 ([1]). Let F' be an essential sub-surface of F, and γ a geodesic segment in $C(F)$, such that $\pi_{F'}(v) \neq \emptyset$ for every vertex v of γ. Then there is a constant M depending only on F' so that $\text{diam}_{C(F')}(\pi_{F'}(\gamma)) \leq M$.

3. Proofs of Main Results

Let S be an orientable closed surface with $g(S) \geq 3$ and J_1, J_2 two separating essential simple closed curves in S. A simplicial path $\{J_1 = a_0, a_1, \ldots, a_{n-1}, a_n = J_2\}$ connecting J_1 to J_2 in $C(S)$ is called locally complicated if a_i is non-separating in S and $\text{diam}_{C(S-a_i)}(\pi_i(J_1), \pi_i(a_{i+1})) \geq M + 7$ for $1 \leq i \leq n - 1$ and $n \geq 2$, where π_i is the projection from $C(S)$ to $C(S - a_i)$ determined by a_i. Denote the component of $S - J_1$ which a_1 does not lie in by S_1 and the component of $S - J_2$ which a_{n-1} does not lie in by S_2. Then we have the following lemma.

Lemma 3.1. Suppose S is an orientable closed surface with $g(S) \geq 3$ and J_1, J_2 two separating essential simple closed curves in S satisfying that there is a locally complicated simplicial path $\{J_1 = a_0, a_1, \ldots, a_{n-1}, a_n = J_2\}$ connecting J_1 to J_2 in $C(S)$, then

1. $\{J_1, a_1, \ldots, a_{n-1}, J_2\}$ is the unique geodesic connecting J_1 to J_2 in $C(S)$.
2. For each essential simple closed curve $C_i \subset S_i$, $\{J_1, a_1, \ldots, a_{n-1}, C_2\}$ and $\{C_1, a_1, \ldots, a_{n-1}, J_2\}$ are the unique geodesics in $C(S)$ connecting C_i to J_1, where $\{i, j\} = \{1, 2\}$, and $\{C_1, a_1, \ldots, a_{n-1}, C_2\}$ is the unique geodesic in $C(S)$ connecting C_1 to C_2.

Proof. (1) Suppose $\{J_1 = b_0, b_1, \ldots, b_k = J_2\}$ is a geodesic in $C(S)$ connecting J_1 to J_2. Since $\{J_1, a_1, \ldots, a_{n-1}, J_2\}$ is a simplicial path connecting J_1 to J_2, $k \leq n$. Since $a_{n-1} \cap J_2 = \emptyset$, $a_{n-1} \neq b_i$ for $0 \leq i < k - 1$. Since $a_{n-1} \neq J_2$, $\pi_{n-1}(J_2) \neq \emptyset$. If $a_{n-1} \neq b_{k-1}$, then $\pi_{n-1}(b_i) \neq \emptyset$ for $0 \leq i \leq k - 1$. So by Lemma 2.1, $\text{diam}_{C(S-a_{n-1})}(\pi_{n-1}(J_1), \pi_{n-1}(J_2)) \leq M$, a contradiction. So $a_{n-1} = b_{k-1}$.

If $a_{n-2} \neq b_{k-2}$, we can get $\text{diam}_{C(S-a_{n-2})}(\pi_{n-2}(J_1), \pi_{n-2}(a_{n-1})) \leq M$ by a similar argument, a contradiction. So $a_{n-2} = b_{k-2}$.

An induction implies $k = n$ and $a_i = b_i$ for $0 < i < k$. So $\{J_1, a_1, \ldots, a_{n-1}, J_2\}$ is the unique geodesic connecting J_1 to J_2 in $C(S)$.

(2) Suppose \(C_1 \) is an essential simple closed curve in \(S_1 \) and \(\{ C_1 = b_0, b_1, \ldots, b_k = J_2 \} \) is a geodesic connecting \(C_1 \) to \(J_2 \) in \(C(S) \).

If \(C_1 \cap J_2 = \emptyset \), then \(\{ J_1, C_1, J_2 \} \) is a simplicial path connecting \(J_1 \) to \(J_2 \) in \(C(S) \). Since \(d_{C(S)}(J_1, J_2) \geq 2 \), both \(\{ J_1, a_1, J_2 \} \) and \(\{ J_1, C_1, J_2 \} \) are geodesics in \(C(S) \) connecting \(J_1 \) to \(J_2 \). Since \(C_1 \subset S_1 \) and \(a_1 \cap S_1 = \emptyset \), \(a_1 \neq C_1 \) and \(\pi_1(C_1) \neq \emptyset \). So \(\text{diam}_{C(S-a_1)}(\pi_1(J_1), \pi_1(J_2)) \leq 4 \), a contradiction. So \(C_1 \cap J_2 \neq \emptyset \) and \(k \geq 2 \).

Since \(a_{n-1} \cap J_2 = \emptyset \), \(a_{n-1} \neq b_i \) for \(0 \leq i < k - 1 \). If \(a_{n-1} \neq b_{k-1} \), then \(\pi_{n-1}(b_i) \neq \emptyset \) for \(0 \leq i \leq k \). So \(\text{diam}_{C(S-a_{n-1})}(\pi_{n-1}(C_1), \pi_{n-1}(J_2)) \leq \mathcal{M} \). Since \(C_1 \subset S_1 \), \(C_1 \cap J_1 = \emptyset \). So \(\text{diam}_{C(S-a_{n-1})}(\pi_{n-1}(J_1), \pi_{n-1}(C_1)) \leq 2 \).

Thus
\[
\text{diam}_{C(S-a_{n-1})}(\pi_{n-1}(J_1), \pi_{n-1}(J_2)) \leq \text{diam}_{C(S-a_{n-1})}(\pi_{n-1}(J_1), \pi_{n-1}(C_1)) \\
+ \text{diam}_{C(S-a_{n-1})}(\pi_{n-1}(C_1), \pi_{n-1}(J_2)) \\
\leq \mathcal{M} + 2,
\]
a contradiction. So \(a_{n-1} = b_{k-1} \).

A similar argument as above implies that \(k = n \) and \(a_i = b_i \) for \(1 \leq i < k \). So \(\{ C_1, a_1, \ldots, a_{n-1}, J_2 \} \) is the unique geodesic connecting \(C_1 \) to \(J_2 \) in \(C(S) \).

For an essential simple closed curve \(C_2 \) in \(S_2 \), with the same method, we can prove that \(\{ J_1, a_1, \ldots, a_{n-1}, C_2 \} \) is the unique geodesic connecting \(J_1 \) to \(C_2 \) in \(C(S) \).

Suppose \(C_1 \) is an essential simple closed curve in \(S_1 \) where \(i = 1, 2 \) and \(\{ C_1 = b_0, b_1, \ldots, b_k = C_2 \} \) is a geodesic connecting \(C_1 \) to \(C_2 \) in \(C(S) \). Suppose \(C_1 = C_2 \).

Since \(d_{C(S)}(J_1, J_2) \geq 2 \), \(\{ J_1, C_2, J_2 \} \) is a geodesic in \(C(S) \) connecting \(J_1 \) to \(J_2 \). Since \(a_{n-1} \neq C_2 \), \(\text{diam}_{C(S-a_{n-1})}(\pi_{n-1}(J_1), \pi_{n-1}(J_2)) \leq \mathcal{M} \), a contradiction. So \(C_1 \neq C_2 \).

If \(C_1 \cap C_2 = \emptyset \), then \(\{ J_1, C_1, C_2, J_2 \} \) is a simplicial path connecting \(J_1 \) to \(J_2 \) in \(C(S) \). So \(n = d_{C(S)}(J_1, J_2) \leq 3 \). Suppose \(n = 3 \), \(\{ J_1, a_1, a_2, J_2 \} \) is the unique geodesic in \(C(S) \) connecting \(J_1 \) to \(J_2 \). Since \(C_1 \cap J_1 = \emptyset \), \(a_2 \neq C_1 \). So \(\pi_2(C_1) \neq \emptyset \) for \(i = 1, 2 \) and \(\text{diam}_{C(S-a_2)}(\pi_2(J_1), \pi_2(J_2)) \leq 6 \), a contradiction.

So \(n = 2 \) and \(\{ J_1, a_1, J_2 \} \) is the unique geodesic in \(C(S) \) connecting \(J_1 \) to \(J_2 \).

In this case, \(a_1 \cap S_1 = \emptyset \), so \(a_1 \neq C_1 \) for \(i = 1, 2 \). Thus \(\pi_1(C_1) \neq \emptyset \) for \(i = 1, 2 \). So \(\text{diam}_{C(S-a_1)}(\pi_1(J_1), \pi_1(J_2)) \leq 6 \), a contradiction. Thus \(C_1 \cap C_2 \neq \emptyset \).

Since \(a_{n-1} \cap C_2 = \emptyset \), \(a_{n-1} \neq b_i \) for \(0 \leq i < k - 1 \). If \(a_{n-1} \neq b_{k-1} \), then \(\pi_{n-1}(b_i) \neq \emptyset \) for \(0 \leq i \leq k \). So \(\text{diam}_{C(S-a_{n-1})}(\pi_{n-1}(C_1), \pi_{n-1}(C_2)) \leq \mathcal{M} \). Since \(C_1 \cap J_1 = \emptyset \), \(\text{diam}_{C(S-a_{n-1})}(\pi_{n-1}(J_1), \pi_{n-1}(C_1)) \leq 2 \) where \(i = 1, 2 \).

Thus
\[
\text{diam}_{C(S-a_{n-1})}(\pi_{n-1}(J_1), \pi_{n-1}(J_2)) \leq \text{diam}_{C(S-a_{n-1})}(\pi_{n-1}(J_1), \pi_{n-1}(C_1)) \\
+ \text{diam}_{C(S-a_{n-1})}(\pi_{n-1}(C_1), \pi_{n-1}(J_2)) \\
+ \text{diam}_{C(S-a_{n-1})}(\pi_{n-1}(J_2), \pi_{n-1}(C_2)) \\
\leq \mathcal{M} + 4,
\]
a contradiction. So \(a_{n-1} = b_{k-1} \).
A similar argument as above implies that $k = n$ and $a_i = b_i$ for $1 \leq i < k$. So \{\C_1, a_1, \ldots, a_{n-1}, \C_2\} is the unique geodesic connecting \C_1 to \C_2 in $C(S)$.

This completes the proof of the lemma.

Before proving the results, let's recall some notations. Let M be a compact orientable 3-manifold and F_1, F_2 two components of ∂M and $V_1 \cup_S V_2$ a Heegaard splitting of M satisfying that F_i is a component of $\partial_v V_i$ where $i = 1, 2$. Let D_i be an essential separating disks in V_i such that a component of $V_i - D_i$ is homeomorphic to $F_i \times I$ for $i = 1, 2$. Denote the component of $V_i - D_i$ which is not homeomorphic to $F_i \times I$ by V_i' and $S_i = \partial_+ (F_i \times I) \cap S$, where $i = 1, 2$. Let f_i be the projection from $C(S)$ to $C(\partial_+ V_i^\prime)$ determined by D_i and V_i, the set of vertices in $C(S)$ represented by boundaries of essential disks in V_i. Let $d_i = d_{C(\partial_+ V_i^\prime)}(D_{V_i^\prime}, f_i(D_{V_i}))$, where $D_{V_i^\prime}$ the set of vertices in $C(\partial_+ V_i^\prime)$ represented by boundaries of essential disks in V_i' and \(\{i, j\} = \{1, 2\} \).

We are now equipped to prove Theorem 1.1.

Proof. (1) Suppose $V_1 \cup_S V_2$ is not keen with distance n. Then there is another pair of essential disks D_1' in V_1 and D_2' in V_2 such that $d_{C(S)}(\partial D_1', \partial D_2') \leq n$. Suppose $\{\partial D_1' = c_0, c_1, \ldots, c_k = \partial D_2'\}$ is a geodesic in $C(S)$ connecting $\partial D_1'$ to $\partial D_2'$ and $k \leq n$.

Claim 1. $D_i' \neq D_i$ for $i = 1, 2$.

Otherwise, suppose $D_1' = D_1$. Since $\{D_1', D_2'\}$ is a distinct pair of disks from $\{D_1, D_2\}$, $D_2' \neq D_2$. Isotope D_2' such that $|D_2' \cap D_2| = 0$. If $D_2' \cap D_2 = \emptyset$, then D_2' is an essential disk in V_2' and $f_2(\partial D_2') = \partial D_2'$.

Suppose $D_2' \cap D_2 \neq \emptyset$. Since V_2 is irreducible, an innermost loop argument implies that there is no closed curve component in $D_2' \cap D_2$. Choose an arc γ from $D_2' \cap D_2$ such that γ is outermost in D_2'. Then γ cuts a disk D_γ from D_2' such that $D_\gamma \cap D_2 = \gamma$. Suppose γ cuts D_2 into two components D_γ' and D_γ''. Let $D_\gamma' = D_2' \cup_D \gamma$. Since $|D_\gamma' \cap D_2| = 0$, both D_γ' and D_γ'' are essential disks in V_2' and $d_{C(S)}(\partial D_\gamma', \partial D_\gamma'') \leq n$. So there always exists an essential disk E in V_2' such that $\partial E \in f_2(\partial D_\gamma')$.

If $f_2(c_i) \neq \emptyset$ for $0 \leq i \leq k - 1$, then by Lemma 2.1
\[
\text{diam}_{C(\partial_+ V_2)}(f_2(\partial D_1), f_2(\partial D_2')) \leq \mathcal{M}.
\]

Thus
\[
d_2 = d_{C(\partial_+ V_2)}(f_2(\partial V_1'), \partial V_2') \\
\leq d_{C(\partial_+ V_2)}(f_2(\partial D_1), \partial E) \\
\leq \text{diam}_{C(\partial_+ V_2)}(f_2(\partial D_1), f_2(\partial D_2')) \\
\leq \mathcal{M},
\]
a contradiction. So there exists some j such that $f_2(c_j) = \emptyset$ where $0 \leq j < k$.

So \(\partial D_1 = c_0, c_1, \ldots, c_j, \partial D_2 \) is a simplicial path in \(C(S) \) connecting \(\partial D_1 \) to \(\partial D_2 \) with length \(j + 1 \). Since \(j < k \leq n, j + 1 \leq n \). Since \(d_{C(S)}(\partial D_1, \partial D_2) = n, j + 1 = n \) and \(\{ \partial D_1 = c_0, c_1, \ldots, c_j, \partial D_2 \} \) is a geodesic in \(C(S) \) connecting \(\partial D_1 \) to \(\partial D_2 \). Since \(c_j \subset S_2 \) and \(a_{n-1} \cap S_2 = \emptyset \), \(c_j \neq a_{n-1} \) and \(\{ \partial D_1 = c_0, c_1, \ldots, c_j, \partial D_2 \} \) is another geodesic different from \(\{ \partial D_1 = a_0, a_1, \ldots, a_n = \partial D_2 \} \). By Lemma 3.1 there is a unique geodesic connecting \(\partial D_1 \) to \(\partial D_2 \), a contradiction. So \(D'_1 \neq D_1 \).

A similar argument implies \(D'_2 \neq D_2 \). This completes the proof of the Claim.

So \(D'_i \neq D_i \) for \(i = 1, 2 \) and \(d_{C(S)}(\partial D_i, \partial D'_i) > n \) where \(\{ i, j \} = \{ 1, 2 \} \). Isotope \(D'_i \) such that \(|D'_i \cap D_i| \) is minimal. If \(D'_i \cap D_i = \emptyset \), then \(D'_i \) is a compressing disk in \(V'_i \) and \(f_i(\partial D'_i) = \partial D'_i \).

Suppose \(D'_1 \cap D_1 \neq \emptyset. \) Since \(V_2 \) is irreducible, an innermost loop argument implies that there is no closed curve component in \(D'_2 \cap D_1 \). Choose an arc \(\alpha \) from \(D'_1 \cap D_1 \) such that \(\alpha \) is outermost in \(D'_1 \). Then \(\alpha \) cuts a disk \(D_0 \) from \(D'_1 \) such that \(D_0 \cap D_1 = \alpha \). Suppose \(\alpha \) cuts \(D_1 \) into two components \(D_1^+ \) and \(D_1^- \). Let \(D'_1 = D'_1 \cup_\alpha D_0 \). Since \(|D'_1 \cap D_1| \) is minimal, both \(D_1^+ \) and \(D_1^- \) are essential disks in \(V'_1 \) and \(\partial D'_1 \in f_1(\partial D'_1) \) where \(i = 1, 2 \). So there always exists an essential disk \(E' \) in \(V'_1 \) such that \(\partial E' \in f_1(\partial D'_1) \).

Since \(d_{C(S)}(\partial D_1, \partial D'_2) > n \geq 2, f_1(\partial D'_2) \neq \emptyset \). If \(f_1(c_j) \neq \emptyset \) for \(1 \leq i \leq k - 1 \), then by Lemma 2.2 \(\text{diam}_{C(S)}(f_1(\partial D'_1), f_1(\partial D'_2)) \leq M \). Thus

\[
\text{diam}_{C(S)}(f_1(\partial D'_1), f_1(\partial D'_2)) \leq M,
\]

a contradiction. So there exists some \(j \) such that \(f_1(c_j) = \emptyset \) where \(0 < j < k \).

Since \(f_1(c_j) = \emptyset \), then we can isotope \(c_j \) such that \(c_j \subset S_1 \) and \(c_j \cap \partial D_1 = \emptyset \). So \(\{ \partial D_1, c_1, \ldots, c_{k-1}, \partial D_2 \} \) is a simplicial path in \(C(S) \) connecting \(\partial D_1 \) to \(\partial D_2 \) with length \(k - j + 1 \). Since \(j \geq 1, d_{C(S)}(\partial D_1, \partial D_2) \leq k - j + 1 \leq k \leq n \), a contradiction. Thus \(d_{C(S)}(\partial D'_1, \partial D'_2) > n \) and \(V_1 \cup S V_2 \) is keen with distance \(n \).

This completes the proof of the first part.

(2) Suppose \(\{ \partial D^1 = b_0, b_1, \ldots, b_m = \partial D^2 \} \) is a geodesic connecting \(\partial D^1 \) to \(\partial D^2 \) in \(C(S) \). A similar argument as above implies that there exist \(k_1, k_2 \) such that \(b_{k_i} \subset S_i \) where \(i = 1, 2 \). By Lemma 3.1 \(\{ b_{k_1}, a_1, \ldots, a_{n-1}, b_{k_2} \} \) is the unique geodesic connecting \(b_{k_1} \) to \(b_{k_2} \) in \(C(S) \).

If \(k_1 = k_2 \), since \(b_{k_1} \cap \partial D_1 = \emptyset \) and \(b_{k_2} \cap \partial D_2 = \emptyset \), \(\{ \partial D_1, b_{k_1} = b_{k_2}, \partial D_2 \} \) is a simplicial path connecting \(\partial D_1 \) to \(\partial D_2 \). Thus \(d_{C(S)}(\partial D_1, \partial D_2) = n = 2. \) Since \(a_1 \neq b_{k_1}, \{ \partial D_1, a_1, \partial D_2 \} \) is another geodesic connecting \(\partial D_1 \) to \(\partial D_2 \), a contradiction. So \(k_1 \neq k_2 \).

If \(k_1 < k_2 \), then \(\{ b_{k_1}, b_{k_1+1}, \ldots, b_{k_2} \} \) is a geodesic connecting \(b_{k_1} \) to \(b_{k_2} \) in \(C(S) \). So \(b_{k_1+i} = a_i \) for \(1 \leq i \leq n - 1 \). Thus the geodesic \(\{ \partial D^1 = b_0, b_1, \ldots, b_m = \partial D^2 \} \)
contains \(\{b_1, a_1, \ldots, a_{n-1}, b_n\} \) as a part and the conclusion holds in this case.

Suppose \(k_2 < k_1 \), then \(\{b_{k_2}, b_{k_2+1}, \ldots, b_{k_1}\} \) is a geodesic connecting \(b_{k_2} \) to \(b_{k_1} \) in \(C(S) \). So \(b_{k_2+i} = a_{n-i} \) for \(1 \leq i \leq n - 1 \).

Suppose \(f_1(b_{k_2}) = \emptyset \). Then \(b_{k_2} \subset S_1 \) and \(d_{C(S)}(b_{k_1}, b_{k_2}) \leq 2 \). If \(n \geq 3 \), then \(d_{C(S)}(b_{k_1}, b_{k_2}) = n \geq 3 \), a contradiction.

If \(n = 2 \), then \(\{b_{k_2}, a_1, b_{k_1}\} \) is the unique geodesic connecting \(b_{k_2} \) to \(b_{k_1} \). In this case, \(b_{k_1} \subset S_1 \) for \(i = 1, 2 \) and \(a_1 \subset S_1 \). It is obvious that there is another essential simple closed curve \(C \) in \(S - S_1 \) such that \(C \neq a_1 \) and \(\{b_{k_2}, C, b_{k_1}\} \) is another geodesic connecting \(b_{k_2} \) to \(b_{k_1} \) in \(C(S) \), a contradiction. So \(f_1(b_{k_2}) \neq \emptyset \).

Suppose there exists some \(i \) such that \(0 \leq i < k_2 \) and \(f_1(b_i) = \emptyset \). Then \(b_i \subset S_1 \) and \(b_i \cap a_1 = \emptyset \). This contradicts to \(d_{C(S)}(b_i, a_1) > 2 \). So \(f_1(b_i) \neq \emptyset \) for \(0 \leq i \leq k_2 \).

Since \(b_k \subset S_2 \), \(b_k \cap \partial D_2 = \emptyset \). So \(\partial D^1, b_1, \ldots, b_k, \partial D_2 \) is a simplicial path connecting \(\partial D^1 \) to \(\partial D_2 \) with length \(k_2 + 1 \).

If \(d_{C(S)}(\partial D^1, \partial D_2) = k_2 + 1 \), then \(\partial D^1, b_1, \ldots, b_k, \partial D_2 \) is a geodesic connecting \(\partial D^1 \) to \(\partial D_2 \). Since \(f_1(b_i) \neq \emptyset \) for \(0 \leq i \leq k_2 \) and \(f_1(\partial D_2) \neq \emptyset \), a similar argument as above implies \(d_1 \leq M \), a contradiction.

So \(d_{C(S)}(\partial D^1, \partial D_2) < k_2 + 1 \). Suppose \(d_{C(S)}(\partial D^1, \partial D_2) = l \leq k_2 \) and there is a geodesic \(\partial D^1, c_1, \ldots, c_{l-1}, \partial D_2 \) in \(C(S) \) connecting \(\partial D^1 \) to \(\partial D_2 \).

Since \(\partial D_2 \cap a_{n-1} = \emptyset \), then

\[
\{\partial D^1, c_1, \ldots, c_{l-1}, \partial D_2, b_{k_2+1}, \ldots, b_{n-1}, \partial D^2\}
\]

is a simplicial path connecting \(\partial D^1 \) to \(\partial D^2 \) in \(C(S) \) with length \(m - k_2 + l \). Since \(d_{C(S)}(\partial D^1, \partial D^2) = m, m \leq m - k_2 + l \). So \(l \geq k_2 \). Thus \(l = k_2 \) and \(\{\partial D^1, c_1, \ldots, c_{k_2-1}, \partial D_2, b_{k_2+1}, \ldots, \partial D^2\} \) is a geodesic connecting \(\partial D^1 \) to \(\partial D^2 \) in \(C(S) \).

By a similar argument as above we can get that

\[
\text{diam}_{C(S)}(f_1(\partial D^1), f_1(\partial D_2)) \leq M,
\]

and then we have \(d_1 \leq M \), a contradiction. So \(k_2 > k_1 \).

This completes the proof of the theorem.

\[\square \]

Acknowledgments

The first author is supported in part by Grant No. 11601209 of NSFC; the second author is supported in part by Grants (Nos. 11671064 and 11471151) of NSFC. The third author is partially supported by Grant No. 11431009 of NSFC; The fourth author is partially supported by the AcRF Tier 1 (WBS No. R-146-000-222-112) of MOE of Singapore and a Grant (No. 11329101) of NSFC.

References

Local uniqueness of certain geodesics

